skip to main content


Search for: All records

Creators/Authors contains: "Ingley, Spencer J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Course-based undergraduate research experiences (CUREs) are high-impact practices that allow students to conduct research during class time. Benefits of a CURE can be maximized when integrated into a faculty member’s ongoing research. However, this can be particularly challenging for field biologists, especially when field sites are not situated near their university. Indeed, few existing CUREs are field based. One solution is to partner with a collaborator near the field site. We describe a semester-long CURE in an animal behavior class that involved collaboration among three institutions: researchers from two “distant” institutions have ongoing research at the “local” institution where the CURE took place. This model uses remote conferencing and strategic collaboration to meet all stakeholders’ needs. Undergraduate students engaged as active participants in collaborative inquiry-based work, learned in a cooperative context, and even participated in the publication process. The local principal investigator and their institution generated a high-impact course that integrated research and teaching. Likewise, the distant principal investigators were able to collect more extensive and longer-term field-based data than otherwise possible, and they gained valuable input from the local researchers that contributed to future projects. Remote collaborations open the door to international collaboration with smaller institutions, promoting greater inclusion in science. 
    more » « less
  2. Abstract

    Animals eavesdrop on signals and cues generated by prey, predators, hosts, parasites, competing species, and conspecifics, and the conspicuousness of sexual signals makes them particularly susceptible. Yet, when sexual signals evolve, most attention is paid to impacts on intended receivers (potential mates) rather than fitness consequences for eavesdroppers. Using the rapidly evolving interaction between the Pacific field cricket,Teleogryllus oceanicus, and the parasitoid fly,Ormia ochracea, we asked how parasitoids initially respond to novel changes in host signals. We recently discovered a novel sexual signal, purring song, in Hawaiian populations ofT. oceanicusthat appears to have evolved because it protects the cricket from the parasitoid while still allowing males to attract female crickets for mating. In Hawaii, there are no known alternative hosts for the parasitoid, so we would expect flies to be under selection to detect and attend to the new purring song. We used complementary field and laboratory phonotaxis experiments to test fly responses to purring songs that varied in many dimensions, as well as to ancestral song. We found that flies strongly prefer ancestral song over purring songs in both the field and the lab, but we caught more flies to purring songs in the field than reported in previous work, indicating that flies may be exerting some selective pressure on the novel song. When played at realistic amplitudes, we found no preferences–flies responded equally to all purrs that varied in frequency, broadbandedness, and temporal measures. However, our lab experiment did reveal the first evidence of preference for purring song amplitude, as flies were more attracted to purrs played at amplitudes greater than naturally occurring purring songs. As purring becomes more common throughout Hawaii, flies that can use purring song to locate hosts should be favored by selection and increase in frequency.

     
    more » « less
  3. Abstract

    The effect of divergent natural selection on the evolution of behavioral traits has long been a focus of behavioral ecologists. Predation, due to its ubiquity in nature and strength as a selective agent, has been considered an important environmental driver of behavior. Predation is often confounded with other environmental factors that could also play a role in behavioral evolution. For example, environments that contain predators are often more ecologically complex and “risky” (i.e., exposed and dangerous). Previous work shows that individuals from risky environments are often more bold, active, and explorative than those from low‐risk environments. To date, most comparative studies of environmentally driven behavioral divergence are limited to comparisons among populations within species that occur in divergent selective environments but neglect comparisons between species following speciation. This limits our understanding of how behavior evolves post‐speciation. The Central American live‐bearing fish genusBrachyrhaphisprovides an ideal system for examining the relationship between selective environments and behavior, within and between species. Here, we test for differences in boldness between sister speciesB. roseniandB. terrabensisthat occur in streams with and without piscivorous predators, respectively. We found that species do differ in boldness, with species that occur with predators being bolder than those that do not. Within each species, we found that sexes differed in boldness, with males being bolder than females. We also tested for a relationship between size (a surrogate for metabolic rate) and boldness, but found no size effects. Therefore, sex, not size, affects boldness. These results are consistent with the hypothesis that complex and risky environments favor individuals with more bold behavioral traits, but they are not consistent with the hypothesis that size (and therefore metabolic rate) drives divergence in boldness. Finally, our results provide evidence that behavioral trait divergence continues even after speciation is complete.

     
    more » « less